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The overall goal of this project was Lo nuderstand in more detail how a pattern-forming system can
adjust its spacing. “Pattern-forming systems,” in this context, are nonequilibrinm contina whose state is
determined by some experimentally adjustable control parameter. Below some ceritical value of the control
parameter, the system remains in a simple steady state. Above eritical, this stale hecomes unstable and the
system then has available to it a range of linearly stable, spatially periodic steady states, each characterized
hy a spacing whiclh can lic anywhere within some hand of values. These systems melnde interfacial systems
like directional solidification, where the solidilication fvont is planar when the ratio of growth velocity (o
thermal gradicnt is below its critical value, bul takes on a cellular shape above critical. They also include
systems withont interfares, such as Bénard convection, where it is the fluid = locity field which changes from
zero to something spatially periodic as the control parameter is increased through its eritical value,

The basic uestion to be addressed was that of how the system chooses one of its myriad possihle
spacings when the control parameter is above eritical, and in particular the role of noise in this selection
process. Previons work on explosive crystallization had swggested thal one spacing in the range should
be preferred, in the sense that weak noise should eventually drive the system (o that spacing. That work
had also suggested a heuristic argmnent for identifving the preferred spacing. The project had three maim
objectives: to understand in more detail how a pattern-forming system can adjust jts spacing; to mvestigate
how noise drives a systein to its preferred spacing: and to extend the heupistic argument for a preferred
spacing in explosive crystallization to other pattern-forming systems.

The project began with the first of these objectives. With an undergraduate student, Jed Overmann,
[ examined the process of pattern adjustment in the Swilt-Rohenberg equation, whiclvis a standard el
of interfacial pattern formation, and some of its generahizations. These equations have lioearly stable steady
states of the form Asin(kr) for a range of wave number k. We developed nunierical alponthims to find the
“saddle” states, the ones which are intermediate between the steady state having N waves on a cerlam
interval and the one having N -+ 1 wates. After some explaration, we came to realize that these saddie states
are essentially phase perturbations of the steady states, in which two ol the N waves are pulled farther apart
than the average spacing, with several neighboring waves pushed very shphtly closer together, Depending
on the detailed shape of the interface in the gap between the separated waves, a new wave may or may not
form there, resulting in a return to the N-wave state or an adjustinent to the Ak T-wave state respectively,
The relevance of this work to the overall project will he disenzsed below.

To address the second objective, Fnvestigated the Fokker-Planck eqnation, which governs the probability
distribution for states of a system subjected to noise. Let the front shape he given by its Foutier spectinim,
with the component of wave mnmber & having amplitude ;. The evolution of the front shape is specified
by equations for the time evolution of the ;.
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The notation A is a shorthand for the collection of all the Ax, and the dot represents a time derivative. "The
possible steady state front shapes are those for which all 4 vanish. For each &, we now add an independent
(iaussian noise source with mean zero and variance 2. This is the appropriate type of noise to add in order
to test which steady state of (1) is preferred by the dynamies, sinee hy giving each wave wuber equal power,
the noise itself does not favor any wave nnmber. The front shiape A then becomes a randont variable, and we
seek its probability distribution P[], After an initial transient, this is given hy the stationary Fokker Planek
equation,
0= d Fop n AP 2)
Taa T ran ) .
with summation over repeated indices iinplicd. Note that the noise strength np omultiplyvies the highest
derivative in the equation, so that the weak-noise loit, 5 — 0, is singular. To solve {2) in this linnt, we
write the 7 in a WKB form, . . B
P = K[A] exp(=3V A}/ (T+ Q). N
Substituting this into (2) and expanding in powers of 7 yields equations for 117 and N From (3) we see that
the most probable state of the system in the weak-noise limit is that for which BV s amininm. Thus the
correct way to determine the preferred stake of the system iz to compute 1 for ench stendy state, then find
the one for which it has the lowest value,
An important speeial case arises when the deterministic equations (1) have a gradient ~lrvctiurc, e

when we have [ [1] = —dP/04; for some sealar function O[A] hi this ease, we hiave the exoel selntion



P = f‘Xp(——?‘b[/ﬂ/u). Although most of (he systems we are interested e do ot have His structnre, systems
which do provide useful checks on the calenlations. 14 is casy 1o see that the dclermimishe rvolution (1)
makes P decrease with titne until the svstemn reaclies a steady state. Thus the linearly stalle steady staliz
are local minima of %, W found that 117 plays alinost the same role Tor systems Licking a gradient stracture:
the deterministic cvoiution never increases 1. Tn particular, linearly stable steady states of the deterministic
dynamics are local nunima of 117, )

"These general considerations show that we need to calewdate WA appearing m (3). The equation for

W ois ;
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This is the Hamilton-Jacobi equation at zero energy for the Hamiltonian | p, Al = P2 4 i de. or the
Lagrangian C[dA/dt, Al = (1/2)( Ay — Fo)(Ap — Fr)o with 117 being the action,
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To calculate the difference in 17 hetween two states, we should find the least-action path connecting those
points and integrate along it according to (5). Least-action paths can be found by mtegrating the Lagranpe
equations in configuration space or the Hamillon equations i phase space. However, since £ 1s ruantfestiy
positive, W must increase along the path. But astable steady state is alocal rinimum of 117, go least-netion
paths must all come euf of such astate. Thus there cannot be a path from ene stable steady state to another,
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To compare two steady stales, we must integrate paths rniing from each steady state Lo some cotmon
point.

To clarify what is involved in these ealenlations, we iave written mimerical code for a simple ense with
only two degrees of freedont and two attractors. The deternministie coqnalions are

Bo=a =t — eyt
(6)
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These equations have a gradirnt structure only for the special case b = A They ave obtained by taking o
typical pattern-forming system tn the weakly nondinear regime (control parameter slightly above eritical) and
keeping only two Fourier modes, whose amplitudes ave denoled here by roand g0 Al details of the particnlar
model and the choice of which wave numhers to keep are einhedded in the constants boeodoand a0 Note
that these equations are not meant o be a serious model of any real pattern-forming system. Rather, we
have studied them to clarify the issues that will avise when doing calenlations for real svsteme, cateulations
which will need to be carried out in high-dimensional, rather than two dimensional, confignration spaces.
The model in (6) has Lwo altractors, ene on the @ axis and cre on the y axis, whose hasins are coparatoed
by a separatrix which contains a repeller at the origin and a saddle point. We fonnd that there are paths
satisfying the Lagrange eqnations which run from each attractor to the origin. but for & # o oue of these
always crosses a caustic, and so is not a minimmm of the action. Thus in order to compare the 117 values
at the two attractors, we nmst lind the least-action paths nmning fron the attractors to oo saddle, and
so compare W at cach attractor with IV at the saddle. Nole that a hy-product of these caleulations is the
relative values of W between 'he attractors and the saddle. This turns out to give the exponentinl noise
dependence of the rate of escape [rom cach atiractor, and so an estimate of the litetimes of the linearly stable
steady states.

The next step, which is enrrently nnder way, is to take what we Liave learned from onr analyfieal
calculations, our low-dimensional numerical calenlations, and our search for saddie states, and devise practienl
numerical methods for comparing the 11 values of attractors in mach higher dimensional systrms. he
attracting states are casy to caleulate, since the time evolution of nearby statles converges to them. We
have developed methods of caleulating the saddic states. What. remaius is to develop efficient methods for
finding the least-action path from an altractor to its neighboring saddles. Two types of method are possible.
Relaxation metheode start with a trial path from the attractor to the saddle then vary the path i order
to minimize the action. With o points along the path in a d-dimensional space, thig 15 a mininvzation aver
nd variables. The alteroative is a shooting method, starting at the attractor, choosing an initial direction
for the path, and integiating the Hamilton or Lagrange cauations, then varving the initial direction inan
attempt to hit the saddle. This is a minnnizalion over anly d — Lvariables, It each trial takes el more
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computation than moving a point. along a trial patl in the relaxation method. The refaxation method ses
the fact that the solution path nmst go to the saddle, but not the fact that 3t st also satisfy the Lagranee
equations, while the shooting method nses the latter fact hul not the former. This is one of two directions
this research has been taking since the conclnsion of the contract.

Clearly the calzulations which give the correcl answer for the preferred spacing are difficult and involved.
It would be much better if there were some vastly simpler way of finding the preforred spacing directly,
without needing to calenlate a variety of intermediate results. This is where the third objective conws .
A candidate for a sinipler evil rion arose in my earlicr work on explosive erystallization; briefly, g the
conjecture that the preferred spacing is the one for which the grow(h rate of the Fourier amplitude, A /i,
regarded as a function of &, has a maximum al. the gie wave numiber & for swhich 24 itsell s amaxinenmn,
The third objective was to vxplore the relation hetween this criterion an @ the correet one, in an attempl
to determine whether and undor what cireumstances the two give the smne vesult, e when the honrstic
argument. is correct.

We have been able (o show that. the henristic eriterion does inderd prodice the correct preferred wave
number when the deterministic equations have a gradient structore. The argument runs as follows, Snppose
the free encrgy functional (P[f\] is minimized anong Gmetions of the form Ay = M8k = g) with o fived wave
number g by A = My(q). Denote the corresponding value of @ by

(l)mm(’l) = ‘l’[ﬂ/“(l[)ls(- - ’[)]- {7
The preferred wave nuher will be the g value for which &y, (q) is o minimn, o find this, we ealenlate
Gpin (g + 89); at the preforred wave number, this will differ from Do (r} by an amount which iz of order

(89)%. We find

Dopin (g + &) = P[AL(q + 0430~ ¢ — Sl
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The functional derivative and its k-derivative appearing on the right side of the nal equation are evalunated
at Ap = Mol(q)8(k —¢) and k = ¢. Thus the second term on the right vanishes, sinee it is just the right side
of the deterministic equations, /A[T] evalunated ab a fixed point. Tu order for ¢ to be the minimun ol by,
the third term on the right nrst then vanish also: in other words, A5 /b, viewed as a function of &, mnst
have a peak at & = ¢. This is precisely what the hemristic avgnment clabms.

It is difficult to see how this argument can be generalized Lo systems which do not have a gradiont
structure. Indeed, general analytical results of any kind are difficult to come by in the non-gradient case. |
am currently trying to work ont the argument when the deteiministic dynanies is close (o a gradient systen,
that is when we have

]”A.[‘Vl] =~ 4 ’("L'[‘T]' (M

where ¢ is a small parameter. Adding the pertarbation ¢ generally shifts the pasitions of the fixed potnts of
the dynamics, the deterministic trajectories, and the action-minimizing paths, Taking all this inlo aceonnt,
we find that the difference in action belween an atiractor A and a saddle B

by

g piven, to first order i o,
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where A0 and 1700 spe the uny sturhed positions of the saddle and attractor, and the Tine intearal is
over the time-reversed, unperturhed deterministic trajectory which runs from the Talter to the former. The
next step, which is in progress, is to seck a relation between this resull and the prediction of the heuristie
criterion.



